알고리즘 2

[머신러닝] 사이킷런(Scikit-Learn) 라이브러리 part1 : 프레임워크, train_test_split

사이킷런$($Scikit-Learn$)$ 라이브러리 사이킷런 라이브러리는 파이썬 기반 머신러닝 라이브러리 중 가장 많이 사용되는 라이브러리이다. 다양한 머신러닝 알고리즘과 API 등을 제공하기 때문에 비교적 쉽고 편리하게 사용할 수 있다는 장점 때문에 데이터 분석가들 사이에서 인기가 있다. 사이킷런 머신러닝 워크플로우 데이터 수집 : 필요한 데이터를 모으고 저장하는 단계 데이터 전처리 : 데이터를 분석에 적합한 형태로 가공하는 단계, $($이상치 제거, 결측치 제거, 정규화, 인코딩 등$)$ 모델 훈련 및 학습 : 전처리된 데이터를 활용해 알고리즘을 학습시키는 단계, 필요에 따라 하이퍼 파라미터 조정 모델 성능 평가 : 학습된 모델의 성능을 평가하는 단계, 정확도, 정밀도, 재현율, F1-score 등의..

[머신러닝] 머신러닝(Machine Learning)이란?

머신러닝$($Machine Learning$)$이란? 데이터를 기반으로 패턴을 학습하고 결과를 예측하는 알고리즘 기법이다. 머신러닝은 금융 서비스, 의료 서비스, 마케팅 등 다양한 분야에 적극적으로 활용될 수 있다. 인공지능과 머신러닝의 관계 인공지능 인공지능은 인간의 지능을 모방한 컴퓨터 시스템으로, 학습, 추론, 인지 능력 등 인간의 지능적 행위를 구현할 수 있도록 하는 기술을 의미한다. 머신러닝 머신러닝은 이러한 인공지능을 구현하기 위한 한 분야로, 데이터로부터 학습하고, 그 학습을 통해 패턴을 인식하며 결정을 내릴 수 있는 능력을 개발하는 과학이다. 딥러닝 딥러닝은 머신러닝의 한 분야로, 인공 신경망의 구조와 알고리즘을 기반으로 한다는 점에서 머신러닝의 다른 기법들과 구별된다. 딥러닝은 여러 층은..