사이킷런 2

[머신러닝] 사이킷런(Scikit - Learn) 라이브러리 part 2 : 데이터 전처리, 교차검증

데이터 전처리(Preprocessing) 데이터 전처리란 데이터 분석을 위해 수집한 데이터를 분석이 적합한 형태가 되도록 가공하는 작업을 의미한다. 데이터 전처리를 통해 불필요한 데이터를 제거하고, 결측치나 이상치를 처리하는 작업을 진행하고, 여러 전처리 기법들을 통해 데이터를 가공하여 데이터의 질을 향상할 수 있다. 만약 데이터 전처리가 제대로 이루어지지 않는다면 부정확한 분석 결과가 나올 수 있기 때문에 데이터 전처리 과정은 데이터 분석을 하는 데에 빠져서는 안 되는 매우 중요한 과정이다. 데이터 전처리 기법 데이터 전처리 기법은 여러 가지가 존재하지만 그중 사이킷런에서 사용되는 가장 대표적인 몇 가지 방법을 소개하겠다. 기법인 크게 Encoding 방법과 Scaling 방법으로 나눌 수 있다. En..

[머신러닝] 사이킷런(Scikit-Learn) 라이브러리 part1 : 프레임워크, train_test_split

사이킷런$($Scikit-Learn$)$ 라이브러리 사이킷런 라이브러리는 파이썬 기반 머신러닝 라이브러리 중 가장 많이 사용되는 라이브러리이다. 다양한 머신러닝 알고리즘과 API 등을 제공하기 때문에 비교적 쉽고 편리하게 사용할 수 있다는 장점 때문에 데이터 분석가들 사이에서 인기가 있다. 사이킷런 머신러닝 워크플로우 데이터 수집 : 필요한 데이터를 모으고 저장하는 단계 데이터 전처리 : 데이터를 분석에 적합한 형태로 가공하는 단계, $($이상치 제거, 결측치 제거, 정규화, 인코딩 등$)$ 모델 훈련 및 학습 : 전처리된 데이터를 활용해 알고리즘을 학습시키는 단계, 필요에 따라 하이퍼 파라미터 조정 모델 성능 평가 : 학습된 모델의 성능을 평가하는 단계, 정확도, 정밀도, 재현율, F1-score 등의..